Literatur zum Blickpunkt Chemie und Computer, 09/2010
[Nachr. Chem. 2010, 58, 897]
1) Paschedag AR, (2004). CFD in der Verfahrenstechnik. Weinheim: Wiley-VCH Verlag.
2) Ranade V, Bourne JR, Joshi J, (1991). Fluid mechanics and blending in agitated tanks. Chem. Eng. Sci. 46: 1883-1893.
3) Jaworski Z, Bujalski W, Otomo N, Nienow A, (2000). CFD study of homogenization with dual rushton turbines - comparison with experimental results, Part I: Initial Studies. Trans IChem. E. 78: 327-333.
4) Min J, Gao Z, (2005). CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers. Chinese J. Chem. Eng. 13: 583-588.
5) Zadghaffari R, Moghaddas J, Revstedt J, (2009). A mixing study in a double-Rushton stirred tank. Comp. Chem. Eng. 33: 1240-1246.
6) Littleton H, Daigger GT, Strom P, (2007). Application of computational fluid dynamics to closed-loop bioreactors: I. characterization and simulation of fluid-flow pattern and oxygen transfer. Wat. Environ. Res. 79: 600-612.
7) Littleton H, Daigger G, Strom P, (2007). Application of computational fluid dynamics to closed-loop bioreactors: II. simulation of biological phosphorus removal using computational fluid dynamics. Wat. Environ. Res. 79: 613-624.
8) Schmalzriedt S, (2001). CFD-Simulation von Mischvorgängen und biotechnischen Stoffumsetzungen in begasten Rührkesselreaktoren. Dissertation, Universität Stuttgart.
9) Schmalzriedt S, Jenne M, Mauch K, Reuss M, (2003). Integration of physiology and fluid dynamics. Adv. Biochem. Eng. Biotechnol. 80: 19-68.
10) Wu YX, Wang X, Ching CB, (2002). Computational fluid dynamics simulation of the adsorption separation of three components in high performance liquid chromatography . Chromatographia 55: 439-445.
11) Boysen H, Wozny G, Laiblin T, Arlt W, (2003). CFD simulation of preparative HPLC columns with consideration of nonlinear isotherms. Chem. Eng. Technol. 26: 651-655.
12) Yu H, Ching C, (2003). Calculation of nonlinear chromatographic band profiles using computational fluid dynamics. Chromatographia 58: 793-796.
13) Gzil P, Vervoort N, Baron GV, Desmet G, (2004). A computational study of the porosity effects in silica monolithic columns. J. Sep. Sci. 27: 887-896.
14) Rainer M, Höflinger W, Koch W, Pongratz E, Oechsle D, (2002). 3D-flow simulation and optimization of a cross flow filtration with rotating discs. Separation and Purification Technology 26: 121-131.
15) Taha T, Cui Z, (2002). CFD modelling of gas-sparged ultra-filtration in tubular membranes. J. Membrane Sci. 210: 13-27.
16) Castilho LR, Anspach FB, (2003). CFD-aided design of a dynamic filter for mammalian cell separation. Biotechnol. Bioeng. 83: 514-524.
17) Francis P, Martinez DM, Taghipour F, Bowen BD, Haynes CA, (2006). Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics. Biotechnol. Bioeng. 95: 1207-1217.
18) Nikolaus K, Tichy J, Ripperger S, (2008). Filteroptimierung auf Basis von CFD Berechnungen. Chem. Ing. Tech. 80: 1567-1571.
19) Boychyn M, Yim SSS, Shamlou PA, Bulmer M, More J, Hoare M, (2001). Characterization of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem. Eng. Sci. 56: 4759-4770.
20) Kellet B, Binbing H, Dandy D, Wickramasinghe S, (2004). CFD simulation of centrifugal cells washers. Biomed. Sci. Instrum. 40: 225-231.
21) Zhang X, Zhang L, Tan W, (2008). Optimization of flow field in inclined gravitational settler for animal cells perfusion culture process. J. Biotechnol. 36: 40.
22) Alexeenko AA, Ganguly A, Nail SL, (2009). Computational analysis of fluid dynamics in pharmaceutical freeze-drying. J. Pharm. Sci. 98: 3483-3494.
23) Langrish T, (2009). Multi-scale mathematical modelling of spray dryers. J. Food Eng. 93: 218-228.
24) Langrish T, Fletcher D, (2001). Spray drying of food ingredients and applications of CFD in spray drying. Chem. Eng. Processing 40: 345-354.
25) Goula A, Adamopolous K, (2004). Influence of spray drying conditions on residue accumulation - simulation using CFD. Drying Technol. 22: 1107-1128.
26) Oakley D, (2004). Spray dryer modeling in theory and practice. Drying Technol. 22: 1371-1402.
27) Launder B, Spalding D, (1974). The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3: 269-289.
28) Wilcox DC, (1994). Turbulence modeling for CFD. La Canada: DCW Industries.
29) Armenante P, Chou C, (1996). Velocity profiles in a baffled vessel with single or double pitched-blade turbines. AIChE Journal 42: 42-54.
30) Hockey RM, Nouri J, (1996). Turbulent flow in a baffled vessel stirred by a 60°pitched blade impeller. Chemical Eng. Sci. 51: 4405-4421.
31) Ranade VV, Dommeti SMS, (1996). Computational snapshot of flow generated by axial impellers in baffled stirred vessels. Chem. Eng. Res. Des. 74: 476-484.
32) Letellier B, Xuereb C, Swaels P, Hobbes P, Bertrand J, (2002). Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach. Chem. Eng. Sci. 57: 4617-4632.
33) Delafosse A, Morchain J, Guiraud P, Liné, (2009). Trailing vortices generated by a Rushton turbine: Assessment of URANS and large Eddy simulations. Chem. Eng. Res. Des. 87: 401-411.
34) Papoutsakis E, (1991). Fluid-mechanical damage of animal cells in bioreactors. Tibtech 9: 427-437.
35) Elias C, Desai R, Patole M, Joshi J, Mashelkar R, (1995). Turbulent shear stress - effect on mammalian cell culture and measurement using laser Doppler anemometer. Chem. Eng. Sci. 50: 2431-2440.
36) Miller J, M. R, Kelly W, (2002). Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer. Biotechnol. Prog. 18: 1060-1067.
37) Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O‘Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägårdh C, Fuchs L, Revstedt J, Friberg P, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A, (2001). Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 85: 175-185.
38) Zhou G, Shi L, Yu P, (2003). CFD study of mixing process in rushton turbine stirred tanks. In: Third International Conference on CFD in the Minerals and Process Industries, S. 293-297. Melbourne, Australia: CSIRO.
39) Min J, Gao Z, (2006). Large eddy simulations of mixing time in a stirred tank. Chinese J. Chem. Eng. 14: 1-7.
40) Jahoda M, Mostek M, Kukukova A, Machon V, (2007). CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation. Chem. Eng. Res. Des. 85: 616-625.
41) Um BH, Hanley TR, (2008). A CFD model for predicting the flow patterns of viscous fluids in a bioreactor under various operating conditions. Korean J. Chem. Eng. 25: 1094-1102.
42) Yeoh SL, Papadakis G, Yianneskis M, (2004). Numerical simulation of turbulent flow characteristics in a stirred vessel using the LES and RANS approaches with the sliding/deforming mesh methodology. Chem. Eng. Res. Des. 82: 834-848.
43) Morud K, Hjertager B, (1996). LDA measurements and CFD modelling of gas-liquid flow in a stirred vessel. Chem. Eng. Sci. 51: 233-249.
44) Hristov H, Mann R, Lossev V, Vlaev S, Seichter P, (2001). A 3-D analysis of gas-liquid mixing, mass transfer and bioreaction in a stirrred bio-reactor. Trans IChem. E. , Part C, 79: 232-241.
45) Deen NG, Solberg T, Hjertager BH, (2002). Flow generated by an aerated rushton impeller: Two-phase PIV experiments and numerical simulations. Can. J. Chem. Eng. 80: 1-15.
46) Khopkar A, Rammohan A, Ranade V, Dudukovic M, (2005). Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem. Eng. Sci. 60: 2215-2229.
47) Lane G, Schwarz M, Evans G, (2005). Numerical modelling of gas-liquid flow in stirred tanks. Chem. Eng. Sci. 60: 2203-2214.
48) Moilanen P, Laakkonen M, Aittamaa J, (2006). Modeling aerated fermenters with computational fluid dynamics. Ind. Eng. Chem. Res. 45: 8656-8663.
49) Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J, (2007). Modelling local bubble size distributions in agitated vessels. Chem. Eng. Sci. 62: 721-740.
50) Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J, (2007). Modelling local gas-liquid mass transfer in agitated vessels. Chem. Eng. Res. Des. 85: 665-675.
51) Kerdouss F, Bannari A, Proulx P, (2006). CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chem. Eng. Sci. 61: 3313-3322.
52) Kerdouss F, Bannari A, Proulx P, Bannari R, Skrga M, Labrecque Y, (2008). Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Comp. Chem. Eng. 32: 1943-1955.
53) Montante G, Paglianti A, Magelli F, (2007). Experimental analysis and computational modelling of gas-liquid stirred vessels. Chem. Eng. Res. Des. 85: 647-653.
54) Sommerfeld M, Decker S, (2004). State of the art and future trends in CFD simulation of stirred vessel hydrodynamics. Chem. Eng. Tech 27: 215-223.
55) Bakker A, Van den Akker H, (1994). A computational model for the gas-liquid flow in stirred reactors. Chem. Eng. Res. Des. 72: 573-582.
56) Michele V, Hempel DC, (2002). Liquid flow and phase holdup - measurement and CFD modeling for two-and three-phase bubble columns. Chem. Eng. Sci. 57: 1899-1908.
57) Gimbun J, Nagy Z, Rielly C, (2008). CFD and population balance modelling of gas-liquid flow via QMOM with moment correction function. In: Sixth International Symposium on Mixing in Industrial Process Industries- ISMIP VI. Niagara on the Lake, Niagara Falls, Ontario, Canada.
58) Gimbun J, Rielly C, Nagy Z, (2009). Modelling of mass transfer in gas-liquid stirred tanks agitated by rushton turbine and CD-6 impeller: A scale-up study. Chem. Eng. Res. Des. 87: 437-451.
59) Löffelholz C, Kaiser SC, Werner S, Eibl D (2010) CFD as tool in order to characterize single-use bioreactors, In: Single-use technology in biopharmaceutical manufacture, Eibl R, Eibl D (eds.). Wiley-VCH Verlag: Weinheim (in press).
60) Schütze J, (2001). Die numerische Simulation von Strömung und Stoffaustausch in gerührten, begasten Bioreaktoren. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig.
61) Moilanen P, (2009). Modelling gas-liquid flow and local mass transfer in stirred tanks. Dissertation, Helsinki University of Technology.
62) Elqotbi M, Montastruc L, Vlaev SD, Nikov I (2010) CFD simulation of gluconic acid production in a stirred gas-liquid fermenter; http://oatao.univ-toulouse.fr/2569/1/Montastruc_2569.pdf (Stand: 5. Juli 2010).
63) Feng W, Wen J, Liu C, Yuan Q, Jia X, Sun Y, (2007). Modeling of local dynamic behaviour of phenol degradation in an internal loop airlift bioreactor by yeast Candida tropicalis. Biotechnol. Bioeng. 97: 251-263.
64) Sato T, Yamada D, Hirabayashi S, (2010). Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management 51(6): 1196-1201.
65) Larsson G, Törnkvist M, Ståhl Wernersson ES, Trägårdh C, Noorman H, Enfors S-O, (1996). Substrate gradients in bioreactors: origin and consequences. Bioproc. Biosys. Eng. 14: 281-289.
66) Vrabel P, van der Lans RG, van der Schot FN, Luyben KC, Xu B, Enfors S-O, (2001). CMA: integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations. Chem. Eng. J. 84: 463-474.
67) Smith R, Carter D, Schurman D, (2004). Pressure and shear differentially alter human articular chondrocyte metabolism: A review. Clin. Orthop. Relat. Res. 427 Suppl.: 89-95.
68) Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky A, Langer R, Freed L, (1999). Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17: 130-138.
69) Jungreuthmayer C, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly D, O'Brien FJ (2009) Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Med. Eng. Phys. 31: 420 – 427.
70) Williams KA, (2002). Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Progr. 18: 951-963.
71) Bilgen B, Sucosky P, Neitzel G, Barabino G, (2006). Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol. Bioeng. 95: 1009-1022.
72) Bilgen B, Barabino GA, (2007). Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol. Bioeng. 98: 282-294.
73) Sucosky P, Osorio DF, Brown JB, Neitzel GP, (2004). Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85: 34-46.
74) Hutmacher DW, Singh H, (2008). Computational fluid dynamics for improved bioreactor design and 3D culture. Trends in Biotechnology 26: 166 - 172.
75) Fluent news supplement (2006) Focus on CFD for the biomedical industry. www.fluent.com/about/news/newsletters/06v15i3/Fluent-News-Fall-06-supp.pdf.
(Stand: 05.07.2010).
76) Eibl R, Kaiser SC, Lombriser R, Eibl D (2010). Einwegbioreaktoren und ihr Einsatz in der Biotechnologie. Laborwelt, 10. Jahrgang, Nr. 3, S. 6-9.
zuletzt geändert am: 22.01.2014 14:32 Uhr von S.Schehlmann